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A JULIA–CARATHÉODORY THEOREM

FOR HYPERBOLICALLY MONOTONE MAPPINGS

IN THE HILBERT BALL

BY

Mark Elin

Department of Mathematics, ORT Braude College,

21982 Karmiel, Israel

e-mail: mark.elin@gmail.com

AND

Simeon Reich∗

Department of Mathematics,

The Technion — Israel Institute of Technology,

32000 Haifa, Israel

e-mail: sreich@tx.technion.ac.il

AND

David Shoikhet

Department of Mathematics, ORT Braude College,

21982 Karmiel, Israel

e-mail: davs27@netvision.net.il

ABSTRACT
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Let B be the open unit ball of a complex Hilbert space H with an inner

product 〈·, ·〉 and an induced norm ‖ · ‖, and let ρ : B × B 7→ R
+ be the

hyperbolic metric on B ([14], p. 98), i.e.,

(1) ρ(x, y) = tanh−1
√

1 − σ(x, y),

where

(2) σ(x, y) =
(1 − ‖x‖2)(1 − ‖y‖2)

|1 − 〈x, y〉|2 , x, y ∈ B.

We denote by Nρ the class of all those self-mappings F : B 7→ B which are

nonexpansive with respect to ρ (ρ-nonexpansive), i.e.,

(3) ρ
(

F (x), F (y)
)

≤ ρ (x, y) .

Note that the class Nρ properly contains the class Hol(B) of all holomorphic

self-mappings of B ([13, 14]).

Definition 1: A family S = {F (t)}t≥0 of self-mappings of B is said to be a

one-parameter continuous semigroup (flow) on B if

(4) F (t+ s) = F (t) ◦ F (s), t, s ≥ 0,

and

(5) lim
t→0+

F (t) = I,

where I is the restriction of the identity mapping of H to B and the limit is

taken pointwise with respect to the strong topology of H.

We denote F (t)x, the value of F (t) at x ∈ B, by Ft(x), t ≥ 0.

Definition 2: A flow S = {F (t)}t≥0 on B is said to be generated if for each

x ∈ B, there exists the strong limit

(6) f(x) := lim
t→0+

1

t
(x− Ft(x)).

In this case the mapping f : B 7→ H is called the (infinitesimal) generator of

S.

If f generates a flow of ρ-nonexpansive self-mappings of B, then we will write

f ∈ GN ρ(B).
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The following result is established in [20]:

� A semigroup S of holomorphic self-mappings of B is differentiable with

respect to the parameter t ≥ 0 (hence, generated by a holomorphic mapping) if

and only if it is locally uniformly continuous on B, i.e., the limit in Definition 1

is uniform on each ρ-ball in B.

Moreover, in this case (see [15] and [21]):

� The generator f is holomorphic on B, and bounded and uniformly contin-

uous on each ρ-ball in B.

The set of all holomorphic semigroup generators is denoted by G Hol(B).

The classical Julia–Carathéodory theorem and the boundary Schwarz–Wolff

lemma play a crucial role in geometric function theory (see, for example, [8] and

[25]). In particular, they can be effectively used in the study of the asymptotic

behavior of discrete and continuous dynamical systems. In this context these

celebrated results may be stated as follows:

� Let F be a holomorphic self-mapping of the open unit disk ∆ in the complex

plane C. If for a boundary fixed point τ ∈ ∂∆ (limr→1− F (rτ) = τ) the angular

derivative ∠F ′(τ) := ∠ limz→τ F
′(z) = k exists finitely, then

|F (z) − τ |2
1 − |F (z)|2 ≤ k

|z − τ |2
1 − |z|2 .

• If k ≤ 1 this inequality means that each horocycle internally tangent to the

unit circle ∂∆ at τ ∈ ∂∆ is F -invariant.

• This is indeed the case when F has no fixed point in ∆ and τ ∈ ∂∆ is its

so-called Denjoy–Wolff point, that is, τ is an attractive fixed point for all orbits

of F.

We use the symbol ∠ limz→τ to denote the limit in each nontangential ap-

proach region (see, for example, [18] and [25]).

Sometimes the above statements are grouped together under the name the

Julia–Wolff–Carathéodory theorem. Higher dimensional analogs can be

found, for instance, in [24, 14, 9, 1, 8, 3, 2].

For holomorphic mappings on the open unit disk ∆ in the complex plane C

(i.e., for the one dimensional case when B = ∆), an infinitesimal version of the

Julia–Wolff–Carathéodory theorem was given in [11]. Namely, it was shown

there that
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� f ∈ G Hol(∆) has no null point in ∆ if and only if for some τ ∈ ∂∆, the

angular derivative

(7) ∠f ′(τ) := ∠ lim
z→τ

f ′(z) = α

exists (finitely) with Reα ≥ 0.

Moreover, α is, in fact, real and if S = {F (t)}t≥0 is the semigroup generated

by f , then

(8)
|Ft(z) − τ |2
1 − |Ft(z)|2

≤ exp (−tα)
|z − τ |2
1 − |z|2 , z ∈ ∆, t ≥ 0.

The point τ is unique and a (globally) attractive sink point of S.

It is worth mentioning that the original Julia–Carathéodory theorem deals not

only with attractive boundary fixed points, but also with repelling fixed points

(see [8, 22]), i.e., it deals with not necessarily fixed point free holomorphic self-

mappings. In this direction, a generalization of the above theorem has recently

been given by M. D. Contreras, S. Dı́az-Madrigal and Ch. Pommerenke [7].

They proved the following one-dimensional assertion:

� Let f ∈ G Hol(∆). For a boundary point τ ∈ ∂∆, the following claims are

equivalent:

(i) the angular limit ∠f ′(τ) := ∠ limz→τ
f(z)
z−τ = β exists finitely;

(ii) the angular limit dFt(τ)
dz := ∠ limz→τ

Ft(z)−τ
z−τ = exp(−tβ).

Note that condition (ii) is equivalent to inequality (8) for some α ≤ β.

In this paper we will establish these assertions for a general complex Hilbert

(not necessarily finite-dimensional) space H. Moreover, we will show that re-

placing the angular derivatives by just radial derivatives, we are able to prove

infinitesimal versions of the Julia–Carathéodory theorem and the boundary

Schwarz–Wolff lemma for the much wider class of generators of semigroups

of ρ-nonexpansive self-mappings of the Hilbert ball B. For the case of the

Denjoy–Wolff point, the asymptotic behavior of one-parameter semigroups of

ρ-nonexpansive and holomorphic mappings was also studied in [10].

Indeed, the content of the classical Schwarz–Pick lemma is the fact that

each holomorphic self-mapping of the open unit disk in the complex plane is

nonexpansive with respect to the Poincaré hyperbolic metric ρ defined by (1).

Therefore, one can try to use metric fixed point theory to derive results regarding

those mappings which are nonexpansive with respect to ρ. At the same time,
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we must remember that if a given mapping (or semigroup) is not holomorphic,

then the notion of derivative makes no sense.

It turns out, however, that although the study of the asymptotic behavior of a

fixed point free semigroup consisting of ρ-nonexpansive mappings is, in general,

much more complicated, one can define the real part of the radial derivative of

its generator at a boundary fixed point and use it to find invariant ellipsoids,

internally tangent at this point to the unit sphere, in the spirit of the Julia–

Carathéodory theorem and the boundary Schwarz–Wolff lemma. To understand

this phenomenon, we first consider the following example.

Example 1: Consider the continuous function f : ∆ 7→ C defined by

f(z) =
z + z̄

2
+ χ

z − z̄

2
− 1,

where χ is a real parameter. Elementary calculations show that for all χ ≥ 1/2

the following boundary flow invariance condition holds:

Re f(z)z ≥ 0, z ∈ ∂∆.

Therefore it follows from Martin’s theorem [17] (see also [19]) that f gener-

ates a semigroup of continuous self-mappings of ∆. Indeed, solving the Cauchy

problem

(9)











∂Ft(z)

∂t
+ f(Ft(z)) = 0,

F0(z) = z, z ∈ ∆,

we find

Ft(z) = 1 − e−t + e−t z + z̄

2
+ e−χt z − z̄

2
, z ∈ ∆.

It is clear that Ft(1) = 1 for all t ≥ 0 and limt→∞ Ft(z) = 1 for all z ∈ ∆.

However, no more information on invariant sets of this semigroup can be

obtained in this way.

If χ = 1, then for each t ≥ 0, the function Ft(z), as well as f , are holomorphic.

Hence one can apply the result in [11] (see (7)–(8) above) to derive

(10) d1(Ft(z)) :=
|1 − Ft(z)|2
1 − |Ft(z)|2

≤ e−t|1 − z|2
1 − |z|2 ,

because the angular derivative of f at the boundary fixed point τ = 1 exists

and equals 1.
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But for χ > 1 our generator f , as well as its generated semigroup, are again

not holomorphic.

However, fortunately, in this situation (χ > 1) one can show that the semi-

group S = {Ft}t≥0 consists of ρ-nonexpansive self-mappings of the open unit

disk ∆ with the Poincaré hyperbolic metric ρ defined on it. Indeed,

Ft(z) =
(

1 − e−t
)

+ z
(

e−t/2 + e−χt/2
)

+ z̄
(

e−t/2 − e−χt/2
)

is a convex combination of holomorphic and anti-holomorphic (hence, ρ-non-

expansive) mappings. So, by Theorem 6.5 on page 75 of [14], Ft is also ρ-

nonexpansive.

In addition, we see that although f is not differentiable in the complex sense

in ∆, its radial derivative at the boundary null point τ = 1 does exist:

α := lim
r→1−

f(r)/(r − 1) = 1.

So, the following question arises:

• Is this fact sufficient to ensure the same invariance condition as (10) for a

semigroup of ρ-nonexpansive self-mappings of the open unit disk ∆?

In this paper we give an affirmative answer to this question in a much more

general situation.

To formulate our results, we need the following notions and notations.

For a fixed τ ∈ ∂B, the boundary of B, and an arbitrary x ∈ B, we define a

non-Euclidean “distance” between x and τ by the formula

(11) dτ (x) :=
|1 − 〈x, τ〉|2

1 − ‖x‖2 .

The sets

(12) E(τ, s) :=

{

x ∈ B : dτ (x) =
|1 − 〈x, τ〉|2

1 − ‖x‖2 < s

}

, s > 0,

are ellipsoids internally tangent to the unit sphere ∂B at τ .

As in [4], it can be shown that the support functional x∗ of the smooth convex

set E(τ, s) at x ∈ ∂E(τ, s), x 6= τ , normalized by the condition

lim
x→τ

〈x− τ, x∗〉 = 1,

can be expressed by

(13) x∗ =
1

1 − ‖x‖2
x− 1

1 − 〈τ, x〉 τ.
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Remark 1: If the generator f : B 7→ H is holomorphic, a result similar to the

following Theorem can be found in [12, Theorem 1.1]. However, the application

of the Theorem in [5] in Step 2 of the proof of [12, Theorem 1.1] is not justified.

We avoid this gap in the present proof of our more general result. In the finite

dimensional case, a different, powerful technique has recently been used in [6]

to prove several related results (see, in particular, Theorem 4.7 there).

Theorem: Let S be a semigroup of ρ-nonexpansive self-mappings of the Hilbert

ball B, generated by f : B 7→ H. Suppose that f is uniformly continuous on

each ρ-ball in B, and τ ∈ ∂B is a null point of f in the sense that lim
r→1−

f(rτ) = 0.

The following assertions are equivalent:

(I)

(14) lim sup
r→1−

Re
〈f(rτ), τ〉
r − 1

> −∞;

(II) α := lim
r→1−

Re 〈f(rτ),τ〉
r−1 exists finitely;

(III) β := inf 2 Re〈f(x), x∗〉 > −∞;

(IV) there exists a real number γ such that

(15) dτ (Ft(x)) ≤ exp(−tγ) · dτ (x), x ∈ B.

Moreover,

(a) α = β and the maximal γ for which (IV) holds is exactly the same β;

(b) if f is holomorphic and one (hence all) of conditions (I)–(IV) holds, then

lim
r→1−

〈f(rτ), τ〉
r − 1

exists and is actually a real number equal to α = β.

Combining this result with Theorem 8.3 in [23], we arrive at the following

analog of the boundary Schwarz–Wolff lemma.

Corollary: Let S = {Ft}t≥0 ⊂ Nρ be a semigroup of ρ-nonexpansive self-

mappings of B generated by f ∈ GN ρ(B). Assume that f is null point free

(that is, S has no stationary point in B). Then there is a unique point τ ∈ ∂B

such that

dτ (Ft(x)) ≤ exp(−tα) · dτ (x), x ∈ B,
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for some α ≥ 0, and there is a continuous curve {x(r) : 0 ≤ r < 1} ⊂ B ending

at τ ∈ ∂B for which

lim
r→1−

f(x(r)) = 0.

Conversely, if for some point τ ∈ ∂B the radial limit limr→1− f(rτ) = 0 and the

radial limit α := lim
r→1−

Re 〈f(rτ),τ〉
r−1 exists and is positive, then for each t > 0,

the mapping Ft has no fixed point in B.

To prove our Theorem we need the following additional concepts and facts.

A mapping f : B 7→ H is said to be hyperbolically monotone or ρ-monotone

([21, 16]) if for each pair x, y ∈ B,

(16) ρ
(

x+ rf(x), y + rf(y)
)

≥ ρ(x, y)

for all r ≥ 0 such that the points x+ rf(x) and y + rf(y) belong to B.

The crucial point in our approach is the following characterization of ρ-

monotonicity [21, Theorem 2.1]:

� A mapping f : B 7→ H is ρ-monotone if and only if

(17) Re

[ 〈f(x), x〉
1 − ‖x‖2

+
〈y, f(y)〉
1 − ‖y‖2)

]

≥ Re

[〈f(x), y〉 + 〈x, f(y)〉
1 − 〈x, y〉

]

for all points x, y ∈ B.

Moreover, if f ∈ GN ρ(B) is uniformly continuous on each ρ-ball in B, then it

is ρ-monotone.

So, each holomorphic generator on B is ρ-monotone.

Proof of Theorem. The implication (II)⇒(I) is trivial. To prove other impli-

cations we denote by ψ the following real-valued function:

ψ(t, x) := dτ (Ft(x)).

By direct calculation we get

(18)
∂ψ(t, x)

∂t

∣

∣

∣

∣

t=0+

= −2ψ(0, x)Re〈f(x), x∗〉,
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where x∗ is defined by (13). Hence, by the semigroup property (4), ψ(t+s, x) =

ψ(s, Ft(x)) and

∂+ψ(t, x)

∂t
:= lim

s→0+

ψ(t+ s, x) − ψ(t, x)

s
= lim

s→0+

ψ(s, Ft(x)) − ψ(0, Ft(x))

s

=
∂ψ(s, Ft(x))

∂s

∣

∣

∣

∣

s=0+

= −2ψ(t, x)Re〈f(Ft(x)), (Ft(x))
∗〉

for each t ≥ 0. Since this right-hand derivative is continuous, it follows (see, for

example, [27, p. 239]) that ψ is, in fact, differentiable at each t ≥ 0 and

(19)
∂ψ(t, x)

∂t
= −2ψ(t, x)Re〈f(Ft(x)), (Ft(x))

∗〉

for all t ≥ 0.

Step 1: (I)⇒(III). If (I) holds, then there exists a sequence {rn} such that

rn ր 1 and

α1 := lim sup
r→1−

Re
〈f(rτ), τ〉
r − 1

= lim
n→∞

Re
〈f(rnτ), τ〉
rn − 1

.

Setting y = rnτ in (17), we get

Re

[ 〈f(x), x〉
1 − ‖x‖2

+
〈rnτ, f(rnτ)〉

1 − r2n

]

≥ Re

[ 〈f(x), rnτ〉 + 〈x, f(rnτ)〉
1 − 〈x, rnτ〉

]

,

or, equivalently,

Re

〈

f(x),
x

1 − ‖x‖2
− rnτ

1 − rn 〈τ, x〉

〉

≥

Re

〈

f(rnτ),
x

1 − rn 〈x, τ〉 −
rnτ

1 − r2n

〉

.

Letting now n tend to ∞, we see that

Re 〈f(x), x∗〉 ≥ α1/2 ,

i.e., (III) holds and β is not less than α1. By the way, this implies that α1 is

finite.

Step 2: (III)⇔(IV). Let (IV) hold for some real number γ. Differentiating (15)

at t = 0, we obtain

2 Re〈f(x), x∗〉 ≥ γ,
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i.e., (III) holds, and β ≥ γ.

Let now (III) hold. Then by (19),

∂ψ(t, x)

∂t
≤ −ψ(t, x)β.

Integrating this inequality with respect to t, we see that (IV) holds with γ = β.

Step 3: (III)⇒(I). Let

2 Re

〈

f(x),
x

1 − ‖x‖2
− τ

1 − 〈τ, x〉

〉

≥ β.

Substituting x = rτ, 0 < r < 1, we see that

2 Re

〈

f(rτ),
rτ

1 − r2
− τ

1 − r

〉

≥ β,

or

Re
〈f(rτ), τ〉
r − 1

· 2

r + 1
≥ β.

Therefore

lim inf
r→1−

Re
〈f(rτ), τ〉
r − 1

≥ β.

Hence (I) holds and lim supr→1− Re 〈f(rτ),τ〉
r−1 ≥ β.

Step 4: Just by comparing Step 1 and Step 3, we conclude that (III) implies

(II), i.e., if (III) holds, then α = limr→1− Re 〈f(rτ),τ〉
r−1 exists and is equal to β.

Step 5: To end the proof, we have to prove (b).

Suppose that f is holomorphic. We introduce a holomorphic function

g ∈ Hol(∆,C) as follows:

(21) g(λ) := 〈f(λτ), τ〉 − (β/2)(λ2 − 1).

It follows from (III) that

Re 〈f(λτ), (λτ)∗〉 ≥ β/2 .
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On the other hand,

〈f(λτ), (λτ)∗〉 =

〈

f(λτ),
λτ

1 − |λ|2 − τ

1 − λ̄

〉

= 〈f(λτ), τ〉 ·
( λ̄

1 − |λ|2 − 1

1 − λ

)

=

(

g(λ) +
β

2
(λ2 − 1)

)

· λ̄− 1

(1 − |λ|2)(1 − λ)

= g(λ) · |λ− 1|2
−(1 − |λ|2)(1 − λ)2

+
β

2

(1 − λ̄)(1 + λ)

1 − |λ|2 .

Therefore Re g(λ)
−(1−λ)2 ≥ 0. By the Riesz–Herglotz representation formula,

g(λ)

−(1 − λ)2
=

∮

|ζ|=1

1 + λζ̄

1 − λζ̄
dσ(ζ),

where dσ(ζ) is a positive measure on the unit circle. Decomposing dσ with

respect to Dirac’s δ-function at the point ζ = 1, dσ(ζ) = aδ(ζ)+ dσ1(ζ), a ≥ 0,

we calculate:

(22) lim
r→1−

g(r)

r − 1
= lim

r→1−

(1 − r)

∮

|ζ|=1

1 + rζ̄

1 − rζ̄
(aδ(ζ) + dσ1(ζ)) = 2a ≥ 0.

This fact, in turn, implies that

(23) lim
r→1−

〈f(rτ), τ〉
r − 1

= lim
r→1−

(

g(r)

r − 1
+
β

2
(r + 1)

)

= 2a+ β

exists and is real.

Since by Step 4, Re(2a+ β) = β, we have that a = 0, and hence the limit

lim
r→1−

〈f(rτ), τ〉
r − 1

= β

is real. This completes the proof of our theorem.

Remark 2: As pointed out by the referee, our assumption that τ is a bound-

ary null point of f in the sense that limr→1− f(rτ) = 0 is used to prove the

implication (I)⇒(III). As a matter of fact, our proof shows that (III) and (IV)

are equivalent even without this assumption. For holomorphic mappings in the

finite dimensional case, a complete characterization of boundary regular fixed

points of semigroups is given in [6] (see Theorems 3.8 and 4.7 therein).



408 MARK ELIN, SIMEON REICH AND DAVID SHOIKHET Isr. J. Math.

Example 2: Let H1 be a Hilbert space. Consider the semigroup of holomorphic

self-mappings of the unit ball B of the space H := C×H1 defined by the formula

Ft(z1, z2) =

(

z1
z1 + et(1 − z1)

,
et/2z2

z1 + et(1 − z1)

)

,

where z1 ∈ C, z2 ∈ H1, |z1|2 +‖z2‖2 < 1. This semigroup has a boundary fixed

point τ = (1, 0) which is not its Denjoy–Wolff point. Consider the semigroup

generator f ∈ Hol(B,H):

f(z1, z2) = − ∂Ft(z1, z2)

∂t

∣

∣

∣

∣

t=0+

=
(

z1(1 − z1), ((1 − 2z1)z2)/2
)

.

Now we just calculate

α = lim
r→1−

〈f(rτ), τ〉
r − 1

= −1.

Hence,

dτ (Ft(z)) ≤ etdτ (z), z ∈ B, t ≥ 0.

Example 3: Define another semigroup {Ft}t≥0 = {(Ft)1 , (Ft)2}t≥0 on the unit

ball B of the same space H by the formulas:

(Ft)1 (z1, z2) =
(1 + z2

1)e2t − (1 − z1)
√

2(1 + z2
1)e

2t − (1 − z1)2

(1 + z2
1)e2t − (1 − z1)2

,

(Ft)2 (z1, z2) = z2

√

∂ (Ft)1 (z1, z2)

∂z1
,

where z1 ∈ C, z2 ∈ H1, |z1|2+‖z2‖2 < 1. Consider its generator f ∈ Hol(B,H):

f(z1, z2) = − ∂Ft(z1, z2)

∂t

∣

∣

∣

∣

t=0+

=

(

− (1 − z1)(1 + z2
1)

1 + z1
,
z2(1 − z1 + z2

1 + z3
1)

(1 + z1)2

)

.

It is clear that f has three boundary null points: τ1 = (1, 0), τ2 = (i, 0) and

τ3 = (−i, 0). For each one of them we just calculate

α1 = lim
r→1−

〈f(rτ1), τ1〉
r − 1

= lim
r→1−

−(1 − r)(1 + r2)

(1 + r)(r − 1)
= 1,

α2 = lim
r→1−

〈f(rτ2), τ2〉
r − 1

= lim
r→1−

−(1 − ri)(1 − r2)(−i)
(1 + ri)(r − 1)

= −2,

α3 = lim
r→1−

〈f(rτ3), τ3〉
r − 1

= lim
r→1−

−(1 + ri)(1 − r2)i

(1 − ri)(r − 1)
= −2.
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Hence, the following three inequalities hold simultaneously for all z ∈ B and

t ≥ 0:

dτ1
(Ft(z)) ≤ e−tdτ1

(z),

dτ2
(Ft(z)) ≤ e2tdτ2

(z),

dτ3
(Ft(z)) ≤ e2tdτ3

(z).

These inequalities mean that for each point z ∈ B and for each t ≥ 0, the image

Ft(z) belongs to the intersection of the ellipsoids:

E(τ1, e
−tdτ1

(z)) ∩ E(τ2, e
2tdτ2

(z)) ∩ E(τ3, e
2tdτ3

(z)).

Example 4: Consider the one-parameter continuous semigroup S = {Ft}t≥0,

consisting of holomorphic self-mappings of the open unit disk ∆ in the complex

plane, defined by

Ft(z) = 1 − (1 − exp(−t) + exp(−t)
√

1 − z)2, z ∈ ∆, t ≥ 0.

One can check that S is generated by the following function:

f(z) = −2
√

1 − z(
√

1 − z − 1).

It is easy to see that f(1) = 0, but f has no angular derivative at the point

z = 1. At the same time, this point is not even a fixed point of S.

Example 5: Now we consider the semigroup S = {Ft}t≥0 ⊂ Hol(∆) defined by

Ft(z) =
(1 + z)α(t) − (1 − z)α(t)

(1 + z)α(t) + (1 − z)α(t)
,

where α(t) = e−2t. Differentiating at t = 0, we find its generator:

f(z) = (1 − z2) log
1 + z

1 − z
.

Similarly as in the previous example, f(±1) = 0, but f has no angular derivative

at the points τ1 = 1 and τ2 = −1. However, in contrast with that example,

these points are fixed points of the semigroup:

Ft(±1) = ±1 for all t ≥ 0.

Moreover, it is possible to calculate the “non-Euclidean distance” d±1(Ft(z)).

In particular, for real z = x we have:

d1(Ft(x)) =
1 − Ft(x)

1 + Ft(x)
= ((1 − x)/(1 + x))α(t) = d1(x)

α(t).
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Since 0 < α(t) < 1 when t > 0, we conclude that for each fixed t > 0, the

quotient d1(Ft(x))
d1(x) tends to infinity as z = x tends to 1 radially, i.e., d1(Ft(z))

does not admit an estimate of the form A(t)d1(z).
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Dynamic Systems and Applications 10 (2001), 421–437.

[12] M. Elin and D. Shoikhet, Semigroups of holomorphic mappings with boundary fixed

points and spirallike mappings, in Geometric Function Theory in Several Complex Vari-

ables, World Sci. Publ., River Edge, NJ, 2004, pp. 82–117.

[13] T. Franzoni and E. Vesentini, Holomorphic Maps and Invariant Distances, North-

Holland, Amsterdam, 1980.

[14] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive

Mappings, Marcel Dekker, New York and Basel, 1984.



Vol. 164, 2008 JULIA-CARATHÉODORY THEORM 411
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[16] E. Kopecká and S. Reich, Hyperbolic monotonicity in the Hilbert ball, Fixed Point

Theory and Applications, 2006, Article ID 78104, pp. 1–15.

[17] R. H. Martin, Jr., Differential equations on closed subsets of a Banach space, Transactions

of the American Mathematical Society 179 (1973), 399–414.

[18] Ch. Pommerenke, Boundary Behavior of Conformal Maps, Springer, Berlin, 1992.

[19] S. Reich, On fixed point theorems obtained from existence theorems for differential equa-

tions, Journal of Mathematical Analysis and Applications 54 (1976), 26–36.

[20] S. Reich and D. Shoikhet, Generation theory for semigroups of holomorphic mappings in

Banach spaces, Abstract and Applied Analysis 1 (1996), 1–44.

[21] S. Reich and D. Shoikhet, Semigroups and generators on convex domains with the hy-

perbolic metric, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,

Matematiche e Naturali. Rendiconti Lincei. Serie IX. Matematica e Applicazioni 8 (1997),

pp. 231–250.

[22] S. Reich and D. Shoikhet, The Denjoy–Wolff theorem, Encyclopaedia of Mathematics,

Supplement III, Kluwer Academic Publishers, Dordrecht, 2001, pp. 121–123.

[23] S. Reich and D. Shoikhet, Nonlinear Semigroups, Fixed Points, and Geometry of Domains

in Banach Spaces, Imperial College Press, London, 2005.

[24] W. Rudin, Function Theory in the Unit Ball of C
n

, Springer, Berlin, 1980.

[25] J. H. Shapiro, Composition Operators and Classical Function Theory, Springer, Berlin,

1993.

[26] D. Shoikhet, Semigroups in Geometrical Function Theory, Kluwer, Dordrecht, 2001.

[27] K. Yosida, Functional Analysis, Springer, Berlin, 1980.


